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Preface

The language of numbers, like any language, has its own alphabet. 
In the language of numbers that is now used virtually worldwide, the 
alphabet consists of ten digits, 0 through 9. This language is the decimal 
number system. But this language has not always been used universally. 
From a purely mathematical point of view, the decimal system has no 
inherent advantages over other possible number systems; its popularity 
is due not to mathematical principle, but to a set of historical and 
biological factors.

In recent times the decimal system has received serious competition 
from the binary and ternary systems, which are “ preferred” by modern 
computers.

In this pamphlet we will discuss the origin, properties, and applica
tions of various number systems. The reader need not be familiar with 
mathematics beyond that covered in the high school curriculum.

Two sections (9 and 11) have been added to the second edition, and 
several minor corrections have been made.





1. Round and Unrounded Numbers

“ A man about 49 years old went out for a stroll, walked down the 
street for about 196 meters, and went into a store; he bought 2 dozen 
eggs there and then continued walking. . . Doesn’t that sound a little 
strange ? When we measure something approximately, such as distance 
or someone’s age, we always use round numbers and ordinarily say 
“ 200 meters,” “ 50-year-old man,” and the like. It is simpler to operate 
with round numbers: They are easier to remember, and arithmetical 
computations are easier to perform on them. For example, no one has 
trouble multiplying 100 by 200 in his head, but multiplying two un
rounded three-digit numbers, such as 147 and 343, is so difficult that 
almost no one can do it without pencil and paper.

In speaking of round numbers, we do not normally realize that the 
division of numbers into “ round” and “ unrounded” is dependent on 
the way in which we are writing the number or, as we usually say, which 
number system we are using. In investigating this matter, let us first 
examine the decimal number system, which we all use. In this system 
every positive integer (whole number) is represented in the form of a 
sum of ones, tens, hundreds, and so on; that is, in the form of a sum of 
powers of 10 with coefficients which can assume the values 0 through 9. 
For example, the notation 2548 denotes the number consisting of 8 
ones, 4 tens, 5 hundreds, and 2 thousands; so that 2548 is an abbreviation 
of the expression

2 1 0 3 + 5 •102 + 4-101 +  8-10°.

However, we could, with the same success, represent every number in 
the form of a combination of powers, not of the number 10, but of any 
other positive integer (except 1); for example, the number 7. In this
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2 Round and Unrounded Numbers

system, the so-called heptary number system or the number system with 
base seven, we would make calculations from 0 to 6 in the usual 
manner, but we would take the number 7 as a unit of the next order. 
In our new heptary number system this number is naturally designated 
by

10

(a unit of the second order). So that we do not confuse this designation 
with the decimal number 10, we attach the subscript 7, so that for seven 
we write

( 10) v .

Units in the succeeding places serve to denote the numbers 72, 73, and 
so forth. They are designated

(100)7 , (1000)7 , etc.

We can represent any positive integer by combinations of powers of 
seven; that is, any positive integer can be expressed in the form

ok- lk + ah- 1- lk~1 + • • • + cii-1 + a0 ,

where each of the coefficients a0, au . . ak can assume any whole value 
from 0 to 6. Just as in the decimal system, it is natural to drop the 
writing of the powers of the base and to write the number in the form

iakak- 1 ' ' 'alao)l 5

again using the subscript to indicate the base of the number system 
that we are using—in this case, 7.

Let us look again at our example. The decimal number 2548 can be 
represented as

1 • 74 + 0- 73 + 3-72 + 0-7 + 0 , 

or, using our notation, as

(10300),.

Thus,

(2548)10 = (10300),.
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We note that round numbers in the new heptary number system will 
be completely different from round numbers in the decimal system. 
For example,

(147)10 = (300)7 ,
(343)10 = (1000)7

(since 147 = 3-72 and 343 = 73); at the same time,

(100)lo = (202)7 ,
(500)lo = (1313)7 ,

and so forth. Therefore, in base seven, multiplying (147)10 and (343)10 
in your head is simpler than multiplying (100)lo by (200)lo- If we used 
the base seven system, an age of 49 years (and not 50) would undoubted
ly be taken as “ rounded data,” and if we said “ 98 meters” or “ 196 
meters,” it would naturally be taken as an estimate by sight (since 
(98)10 = (200)7 and (196)10 = (400)7 are round numbers in base seven). 
We would count objects by sevens rather than by tens; and so on. 
In short, if the base seven system were generally accepted, the sentence 
with which we began would surprise no one.

However, the base seven system is not widely used and can in no way 
compete with the decimal system, which is used everywhere. What is the 
reason for this?

2. The Origin of the Decimal Number System

Why does the number 10 play such a privileged role? Someone far 
removed from these questions would probably answer without thinking, 
“ It is easy to work with the number 10—it is a round number; it is easy 
to multiply by any number; and, therefore, it is easy to count by tens, 
hundreds, and so on.” But we have already seen that the situation is 
actually reversed: The number 10 is round only because it is used as the 
base for the number system. In the transition to another number system, 
say the heptary system (where ten is written (13)7), the “ roundness” of 
10 disappears.

The reasons why the decimal system has had such general acceptance 
are not at all mathematical. The ten fingers of two hands were man’s 
first mechanism for counting. It is convenient to count from one to ten 
on the fingers. After counting to ten, completely using up our natural 
“ counting apparatus,” it is natural to take the number 10 as a new, 
larger unit (a unit of the next higher order). Ten tens comprise a unit
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of the third order, and so on. Thus, it is because of man’s ten-fingered 
counting that the decimal system, which now seems self-explanatory, 
originated.

3. Other Number Systems and Their Origins

The decimal system did not always occupy the dominant position. 
In various historical periods many peoples used number systems other

than the decimal. At one time, for example, 
use of the duodecimal system was rather 
widespread. Its origin is also undoubtedly 
connected with counting on the fingers. The 
four fingers of the hand (excluding the thumb) 
have a total of 12 phalanges (fig. 1), so that 
by using the thumb to count off these 
phalanges in turn, a person could count from 
1 to 12. Then 12 is taken as a unit of the next 
order, and so forth. The duodecimal system 
has survived in language to this day: Instead 
of saying “ twelve” we often say “ a dozen.” 
Many objects (knives, forks, plates, handker
chiefs, and the like) are more often counted 

by dozens than by tens. (Recall, for example, that a service is, as a rule, 
for 6 or 12, and much less often for 5 or 10.) Even now the word “ gross” 
is occasionally used, meaning “ a dozen dozens” (that is, a unit of the 
third order in the duodecimal system), and several decades ago it was 
widely used, especially in the world of commerce. A dozen gross was 
called a “ mass,” but now this meaning of the word “ mass” is known 
to few.1

The English have unquestionable remnants of the duodecimal system 
—in their system of measures (for example, 1 foot = 12 inches) and in 
their monetary system where 1 shilling used to equal 12 pence.

Let us remark that from a mathematical point of view the duo
decimal system would have several advantages over the decimal system 
in that the number 12 is divisible by 2, 3, 4, and 6, while 10 is divisible 
only by 2 and 5; in general, a large stock of divisors of the base of the 
number system assures certain conveniences in the use of that system. 
We shall return to this question in section 7, when we discuss tests for 
divisibility.

1. However, it is possibly the source of such common expressions as a “ mass 
of m en” (compare it with the expression “ a thousand m en” ).
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In ancient Babylon, where civilization and mathematics were rather 
advanced, a highly complex base sixty system was used. Historians 
differ in their explanations of how such a system arose. One of the 
hypotheses, though it is not particularly believable, states that there 
was a mingling of two tribes, one of which used the base six system and 
the other the decimal system. The base sixty system then arose as a 
compromise between these two systems.

Another hypothesis is based on the Babylonian calculation of the 
year. Although Babylonian astronomy was sufficiently advanced so that 
the length of the year could be calculated exactly, the Babylonians 
found it convenient to designate a period of twelve thirty-day months 
as a “ year,” with an extra month added to every sixth year (except for 
occasional corrections). A year of 360 days naturally leads to the 
number sixty, since 360 is six times sixty. It has been suggested, however, 
that the convenience of the 360-day year is itself a result of the Baby
lonian use of the sexagesimal system. Although the origin of the sexa
gesimal system remains obscure, its existence and widespread use in 
Babylon is well established. This system, like the duodecimal, survives 
to a certain extent in our time (for example, in the division of the hour 
into 60 minutes and the minute into 60 seconds, and in the analogous 
system of measuring angles: 1 degree =  60 minutes, 1 minute = 60 
seconds). On the whole, however, the Babylonian system, although it 
did not require the use of sixty different “ digits,” is rather cumbersome 
and less convenient than the decimal system.

According to the evidence of Stanley, the explorer of Africa, in a 
number of African tribes the base five (quinary) system of counting is 
widely used. The connection of this system with the structure of the 
human hand is clear enough.

The Aztecs and the Mayas—peoples who lived for many centuries 
in wide areas of the American continent and who developed a highly 
advanced civilization which was almost completely destroyed by the 
Spanish conquistadors in the sixteenth and seventeenth centuries— 
used the base twenty system. The same base twenty system was used 
by the Celts, who lived in Western Europe beginning in 2000 B.c. Some 
traces of the Celts’ base twenty system remain in the French language 
of today. For example, “ eighty” in French is quatre-vingt—literally 
“ four twenties.” The number 20 also used to occur in the French 
monetary system: The basic monetary unit—the franc—was divided 
into 20 sous.

Of the four systems of counting cited above (the duodecimal, quinary, 
sexagesimal, and base twenty), which, along with the decimal, have 
played an appreciable role in the development of human civilization,
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all (except the sexagesimal, whose origin is unclear) are connected in 
some way with counting on the fingers (or on the fingers and toes); 
that is, like the decimal system, they undoubtedly have an “ ana
tomical” origin.

As the above examples show (their number could have been en
larged), numerous traces of these systems of counting have been pre
served in our time in the languages of many peoples, in monetary 
systems, and in systems of measure. However, in notation and in 
calculation, we always use the decimal system.

4. Positional and Nonpositional Systems

All the systems of counting which we discussed above are based on 
one general principle. Some number p is chosen—the base of the 
number system—and every number N is represented in the form of 
combinations of its powers with coefficients selected from 0 to p — 1, 
that is, in the form

akpk + ak-iP k~1 + • • • + a1p + a0 .

Then the number is written in the shortened form

iakak- 1' ' ‘ alao)p •

In this notation the value of each digit depends on the place that the 
digit occupies. For example, in the number 222, two occurs three times. 
But the first digit from the right represents two units, the second from 
the right—two tens (twenty), and the third—two hundreds. (Here we 
have the decimal system in mind. If we used another number system, 
say with base p, these three twos would represent the values of 2, 2p, 
and 2p2, respectively.) Number systems constructed in this way are 
called positional.

Other number systems exist—nonpositional number systems con
structed on different principles. A well-known example of such a system 
is the Roman numeral system. In that system there are several different 
basic symbols: the unit I (one), V (five), X (ten), L (fifty), C (hundred), 
and so on—and every number is represented as a combination of these 
symbols. For example, in this system the number 88 is

LXXXVIII.

In this system the meaning of a symbol does not depend on the place in 
which it stands, except when a letter of smaller value is placed to the
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left of one with larger value. In that case, the position of the letters is 
important. For example, the expression IV denotes the number four, 
while VI denotes the number six. In general, though, a given letter will 
denote the same value regardless of placement; in the representation of 
the number 88 above, the symbol X occurs three times, each time de
noting the same value—ten units.

We often encounter Roman numerals today—on clock faces, for 
example; they are not used in mathematical practice, however. Posi
tional systems are more convenient because they allow us to represent 
large numbers using relatively few symbols. A more important advan
tage of a positional system is the simplicity of performing arithmetical 
operations on numbers written in such a system. (Try, for comparison, 
to multiply two three-digit numbers written in Roman numerals.)

From now on we shall consider only positional systems.

5. Arithmetic Operations in Various Number Systems

For numbers written in the decimal system, we use a “ columnwise” 
method for addition and multiplication, and a “ diagonal” method for 
division. These rules are completely applicable to numbers written in 
any positional system.

Consider addition. In the decimal system, as well as in any other 
system, we begin by adding the units, then go to the next place, and so 
on, until we reach the highest available place. We must remember that 
every time the sum in a preceding place has a result greater than or 
equal to the base of the number system in which it is written, we must 
carry over to the next place. For example,

(1) (2365 l)e 
+  (17043)8

(42714)8

(2) ( 423)e
(1341)6

+  ( 521)e

(3125)6

We now turn to multiplication. For the sake of definiteness, we choose 
a specific system, say the hexary (base six). The basis for multiplication 
of any two numbers is a multiplication table that determines the
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product of any two numbers smaller than the base of the system. It is 
not hard to verify that the multiplication table for base six looks like 
this:

0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 10 12 14

3 0 3 10 13 20 23

4 0 4 12 20 24 32

5 0 5 14 23 32 41

Here every square contains the product of the numbers of the row and 
column on whose intersection the square lies, with all numbers written 
in base six (we have omitted the subscripts in order to make the table 
more compact).

Using this table, it is easy to multiply by columns numbers containing 
any number of places. For example,

(352)6 
x (245)6
(3124)6 

(2332)6 
(1144)6
(145244)6

Dividing “ diagonally” is also possible in any number system. Con
sider a problem like the following:

Divide (120101)3 by (102)3 .

The solution is
(120101)3 |(102)3 
(102)3 (1101)3
(111)3 
(102)a 
(201)3 
(102)3 

(22)3
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(Write the divisor, dividend, quotient, and remainder in the decimal 
system and check the accuracy of the result.)

Problem 1. The following half-written computation was found on 
the blackboard:

23-5- 
+ 1-642

42423
Find out in what number system the addends and the sum were written.

Answer. Base seven.
Problem 2. When we asked a teacher how many pupils were in his 

class, he answered, “ One hundred children—24 boys and 32 girls.” 
At first his answer astonished us, but then we realized that the teacher 
was simply using a nondecimal system. What system did he have in 
mind?

The solution to this problem is not complicated. Let x  be the base 
of the number system we are seeking. Then the teacher’s words mean 
that he has x 2 pupils, of whom 2x + 4 are boys and 3* +  2 are girls. 
Thus,

2x + 4 + 3x + 2 = x 2 ,
or

yielding
x2 -  5jc -  6 = 0 , 

(x - 6)(x + 1) = 0 ,
or, by the quadratic formula,

5 ± V(25 + 24) 5 ± 7 .
x 2 2 ’

either method yields
Xi = 6 , x 2 = -  1 .

Since — 1 cannot be the base of a number system, x  — 6. Thus, the 
teacher’s answer was in the base six system, and he had 36 pupils— 
16 boys and 20 girls.

6. Translating Numbers from One System to Another

How do we translate a number written in one system, say the decimal, 
into another system, say the base seven system? We already know that 
to write a number A in base seven is to represent it as the sum:

A = ak- lk + afe_1-7fc“1 + • • • + a^-l + a0 .



10 Translating Numbers from One System to Another

Consequently, in order to find the representation of the number A to the 
base seven, we need to find the coefficients a0, a1, . . ak, each of which 
can be some digit between 0 and 6, inclusive. We divide our number A 
by 7 (in integers). The remainder in this division is clearly equal to a0, 
since, in the representation of A, all the terms except the last are evenly 
divisible by 7. Then let us take the quotient obtained from dividing 
the number A by 7, and again divide it by 7. This newly obtained re
mainder will be equal to a±. We continue this process and find all the 
digits a0, al t . . . ,  ak in the base seven representation of A, in the form 
of successive remainders obtained by dividing it repeatedly by 7, as 
described above. Consider, for example, the number

(3287)10 .

Dividing it by 7, we get a quotient of 469 and a remainder of 4. Conse
quently, written to the base 7, the number 3287 has its last digit equal 
to 4. To find the next-to-last digit, we divide our quotient 469 again by
7. We get a quotient of 67 and a remainder of 0. Consequently, the 
next-to-last digit of the number 3287 to the base 7 is 0. Further, we 
divide 67 by 7, obtaining 9 with a remainder of 4. This remainder of 4 
represents the third digit from the end of 3287 written to the base seven. 
Finally, we divide the last quotient 9 by 7, getting a remainder of 2 
and a quotient of 1. The remainder of 2 gives us the fourth digit from 
the end in the desired notation, and the quotient of 1 (which we can no 
longer divide by 7) represents the fifth digit from the end (the first 
digit). Thus,

(3287)10 = (12404)7 .

The right side of this equation is an abbreviation of the expression 

1 • 74 + 2-73 + 4-72 + 0-7 + 4 , 

just as (3287)10 is an abbreviation of the expression

3-103 + 2 -102 + 8-10 + 7 .

The computations that we used for translating from the decimal repre
sentation of the number 3287 into its representation to the base seven 
are conveniently arranged as follows:

3287 

4 469
0 67 

4
2 1
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Everything that we have said above clearly applies not only to the 
base seven system, but to any other such system. A general rule for 
obtaining the representation of some number A in the number system 
with base p can be formulated in the following way: Divide the number 
A by p in integers; the remainder thus obtained will be the last digit of 
the base p representation of the number A. Dividing the quotient 
obtained from this division again by p leaves us a second remainder; 
this will be the digit that occupies the next-to-last place; and so forth. 
The process continues until we obtain a quotient smaller than p, the 
base of the system. That quotient is the digit that occupies the highest 
place.

Let us consider one more example. The problem is to write the num
ber 100 in binary notation. We obtain:

100

0 50
0 25 

1 12
0 6

0 2
r

that is,

( 100)10 =  ( 1100100)2 .

One constantly encounters the problem of translating numbers from 
the decimal to the binary system when working with computers, a 
subject about which we shall have more to say later.

In the examples we have considered, the original number system 
has been the decimal system. We can, however, translate numbers 
from any given system to any other by the same means. To do so, we 
need only note that the process of successive divisions carried out in the 
above examples can also be carried out in any base in which we are 
given the original number representation.

Problem. Let us assume we have a scale (with two pans) and weights 
of 1 gram, 3 grams, 9 grams, 27 grams, and so on (one object of each 
weight). Using only this equipment, is it possible to weigh any mass to 
within an accuracy of one gram ? The answer is yes. We shall present
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the solution here, relying on the representation of positive integers in 
the ternary system. Suppose the object that we wish to weigh weighs A 
grams (taking A as an integer). We can write the number A in the 
ternary system as

^  — (anan-i • • ■ ciia0)3 ,

that is,

A = an-3n +  + • • ■ + 3 + a0 ,

where the coefficients aQ, au . . . ,  an can assume values of 0, 1, or 2.
It is possible, however, to write each number in the ternary system 

somewhat differently, so as to use the digits 0, 1, and — 1 (instead of 0, 
1, and 2). We utilize such a system as follows: We translate the number 
A from the decimal to the ternary system, using the method of succes
sive divisions that we described earlier, except that every time we 
divide by 3 and get a remainder of 2, we will increase the quotient by 1, 
leaving a remainder of — 1.

As a result, we obtain the number A in the form of a sum:

A = bm-3m + 6m_ !• 3m-1 +  • • • + b1 • 3 + b0 ,

where each of the coefficients bm, . . . ,  b0 can assume a value of 
0, 1, or —1. For example, the number 100, which, in the usual ternary 
notation, would have been 10201, would have the form 11(—1)01 in 
this variation, since

(100)10 = (10201)3 = 34 +  33 -  32 +  1 .

Now, we put the mass weighing A grams on the first pan of the scale, 
and we put a weight of one gram on the second pan if b0 = 1, and on 
the first pan if b0 = — 1. (If b0 =  0, we do not use the first weight.) Con
tinuing, we put the 3 gram weight on the second pan if bx = 1, and on 
the first if bx = — 1, and so on. It is easy to see that if we arrange the 
weights in this manner we can balance the weight A. And so, with the 
help of weights of mass 1, 3, 9, and so on, it is possible to balance any 
integral mass on the scales. If the weight of the mass is unknown, we 
choose a distribution of weights that balances the mass and thus 
determines the weight.
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Let us clarify our discussion with an example. Suppose we have a 
mass weighing 200 grams. Translating 200 into ternary notation in the 
usual way, we obtain

Consequently,

200
2 66

0 22 
1

3

7
1

3
2

(200)lo = (21102)3,

or, in greater detail,

200 = 2-34 +  1 -33 + 1 • 32 +  0 • 3 +  2 .

If 200 is translated into ternary notation of the second type, using — 1 
and not 2, we obtain

that is.

200 = 1-35 -  1-34 + 1-33 +  1-32 +  1-3 -  1 .

(The validity of this last equality is easily verified by direct calculation.)
So, in order to balance a mass of 200 grams placed on a pan of the 

scales, we need to put weights of 1 gram and 81 grams on the same pan 
and weights of 3, 9, 27, and 243 grams on the other pan.

7. Tests for Divisibility

There are simple tests that permit us to determine whether a given 
number is divisible, for example, by 3, 5, 9, and so forth. Let us recall 
those tests:
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1. Test o f divisibility by 3. A number is divisible by 3 if and only if 
the sum of its digits is divisible by 3. For example, the number 257802 
(in which the sum of digits is2  + 5 + 7 + 8 + 0 + 2 = 24) is divis
ible by 3, but the number 125831 (in which the sum of digits is 20) is not 
divisible by 3.

2. Test o f divisibility by 5. A number is divisible by 5 if and only if 
its last digit is either 0 or 5 (that is, if and only if 5 divides the number 
of units in the last place).

3. Test o f divisibility by 2. This test is analogous to the immediately 
preceding one: A number is divisible by 2 if and only if 2 divides the 
number of units in the last place.

4. Test o f divisibility by 9. This is analogous to the test of divisibility 
by 3: A number is divisible by 9 if and only if the sum of its digits is 
divisible by 9.

Proof of the validity of these tests presents no difficulty. Let us exam
ine, for example, the test of divisibility by 3. It is based on the fact that 
the units in each place in the decimal system (that is, the numbers 1, 
10, 100, 1000, and so on) leave a remainder of 1 when divided by 3. 
Therefore, since every number

iflnan -1' ■ 'alao)lO 5

that is, every number

an - 10n + an - 1  • 10n 1 + • • • + • 10 + flo

can be written in the form

(an + a „ - 1  + • • • + ax + a0) +
[an(10n -  1) + a ^ O O " - 1 -  1) + • • • + o1(10 -  1) + a0( 1 -  1]),

and since (10fc -  1) for k  = 0 , . . . ,  n is divisible by 3, we may write our 
number in the form

(an + an _ i + • • • + + Co) + B ,

where B is evenly divisible by 3. It is clear, then, that the number

an - 10n + fln_1-10n" 1 + • • • +  fli-10 + a0

is divisible by 3 if and only if 3 divides the number

an +  an _ i + • • • + fli + a0 .
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For example, the decimal number 4851 can be written

4851 = 4-1000 + 8 - 1 0 0 + 5 - 1 0 + 1
= 4 (999 + 1) + 8-(99 + 1) + 5 (9 + 1) + 1 
= 4 +  8 + 5 + 1 4 -  (4-999 + 8-99 + 5-9)
= 4 + 8 + 5 +  1 + 5 ,

where B is divisible by 3. Thus, since 3 divides 4 + 8  + 5 + 1  = 18, 
3 must divide 4851.

The test of divisibility by 5 is based on the fact that the number 10— 
the base of the number system—is divisible by 5; therefore, all the 
powers of ten from the first on are divisible by 5. Therefore, if a number 
is to be divisible by 5, its last digit must yield a remainder of 0 on divi
sion by 5. The test for divisibility by 2 has the same basis: A number is 
even if and only if its last digit is even.

The test of divisibility by 9, like the test of divisibility by 3, is based 
on the fact that every number of the form 10fc leaves a remainder of 1 
when divided by 9.

From the discussion, it is clear that all these tests are based on decimal 
representation of integers, and that they are, generally speaking, in
applicable if we use a different number system. For example, the 
number 86 is written to the base 8 in the form

(126)e

(since 86 = 82 + 2 - 8 + 6). The sum of the digits is 9, but 86 is divisible 
by neither 3 nor 9.

However, in any positional system it is possible to formulate tests for 
divisibility by various numbers. Let us consider a few examples.

We shall write numbers in the duodecimal system and formulate, for 
that notation, a test for divisibility by 6. Since the number 12—the base 
of the number system—is divisible by 6, a number written in the duo
decimal system is divisible by 6 if and only if 6 divides its last digit. (We 
have here the same situation as for divisibility by 2 and by 5 in the 
decimal system.)

Since the numbers 2, 3, and 4 also divide the number 12, the following 
divisibility tests are valid: A number to the base 12 is divisible by 2, 3, 
or 4, respectively if and only if its last digit is divisible by 2, 3, or 4, 
respectively.

We leave it to the reader to check the validity of the following divisi
bility tests in the duodecimal system:
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a. The number A = (anan_1• • -aia0)i 2 is divisible by 8 if and only if 
the number (aia0)i2 (formed by the last two digits of A) is divisible by 8. 
{Hint: 8 is a divisor of 122 =  144, so that all the powers of 12 from the 
second on are divisible by 8.)

b. The number A = {anan^ x- • -aia0)i 2 is divisible by 9 if and only 
if the number (flifl0)i2 (formed by the last two digits of A) is divisible by 
9. {Hint: 9 divides 144.)

c. The number A = {anan_x - ■ -tfia0)i2 is divisible by 11 if and only 
if the sum of its digits (the number an + an- 1 + • • ■ + ax +  a0) is divis
ible by 11. {Hint: \2k — 1 is divisible by 11 for k = 0 , n, since 
12fc — 1 = 11 ■I2k~1 + 11-12‘ - 2 + • • • + 11-12 + 11.)

Let us consider two more problems connected with the divisibility of 
numbers.

Problem 1. The number (3630)p (written in base p) is divisible by 7. 
What is p, and what is the decimal representation of the number A if we 
know that p < 12? Will the problem’s solution be unique if the con
dition p < 12 is not satisfied?

Solution. Since 7 is a prime number (that is, a number whose only 
positive integral divisors are itself and one), it can be shown that if 7 
divides the product ab and 7 does not divide a, then 7 divides b. To 
apply this information to the problem, we may write

(3630) = 3p3 + 6p2 + 3p =  3p{p + l)2 .

Since 7 does not divide 3, 7 dividesp{p + l)2. Since 7 is a prime number, 
divisibility of {p + l)2 by 7 would imply the divisibility of p + 1 by 7. 
Obviously, 7 cannot divide both p and p + 1. Applying this informa
tion, we know that 7 must divide either p or p +  1. If/? < 12, p must be 
either 6 or 7. However, in base 6, the digit string 3630 is meaningless; 
therefore, p = 7. From this it is easy to calculate A =  (1344)10. If the 
condition p < 12 is not satisfied, p  may be any number of the form Ik  
or Ik  — 1, where k = 1, 2, . .  . (except for 7 -1 — 1 = 6).

Problem 2. Prove that the number

{dnOn - i ' flifl0)p 5
that is, the number

an-pn + an_! -pn 1 + • • • +  fli -p +  a0 , 

is divisible by p  — 1 if and only if p — 1 divides the sum

a n +  a n _ i  +  • • • +  a 1  +  a 0  .
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(Compare this general problem with the divisibility test for 9 in the 
decimal system and with the divisibility test for 11 in the duodecimal 
system.)

8. The Binary System

The smallest integer that can be used as the base of a number system 
is 2. The binary (base 2) system is one of the very oldest. It is encoun
tered, although in a very incomplete form, among several Australian 
and Polynesian tribes. The convenience of the system is its extraordinary 
simplicity. In the binary system we have only two digits, 0 and 1, and 
the number 2 is a unit of the second order. The rules for operations on 
binary numbers are very simple. The basic rules for addition are given 
by

0 + 0 = 0 , 0 + 1  = 1 , 1 + 1 = (10)2,

and the multiplication table for the binary system has the form

0 1
0 0 0

1 0 1

A slight disadvantage of the binary system arises as a result of the 
small size of the base. This means that writing even moderately large 
numbers requires the use of many places. For example, the number 1000 
is written in the binary system in the form

1111101000,

using ten digits. However, this disadvantage is often compensated for by 
the convenience of the binary system in modern technology, especially in 
the use of computers.

We shall talk about the technological applications of the binary 
system later, but, for the present, let us consider two problems connected 
with binary number notation.

Problem 1. I am thinking of some base 10 integer between 0 and 1000. 
Can you find out what the number is, asking no more than ten “ yes or 
no” questions? This problem is completely solvable.

One possible series of questions automatically leading to success is:
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First question: “ Is the number you are thinking of evenly divisible by 
2?” If the answer is yes, we write down the number zero; if not, we 
write down the number one. (In other words, we write down the re
mainder obtained by dividing the “ secret” number by 2.)

Second question: “ Divide the quotient, which you obtained from the 
first division, by 2. Is it evenly divisible?” Again, if the answer is yes, 
we write a zero, and if it is no, we write a one.

Each succeeding question will be of the same form, that is, “ Divide 
the quotient, which was obtained from the previous division, by 2. Is it 
evenly divisible ? ” Each time, we write a zero if the answer is affirmative 
and a one if the answer is negative.

Using this procedure 10 times, we obtain 10 digits, each of which is 
either zero or one. It is easy to see that these digits form the binary 
representation of the desired number in reverse order. Actually, our 
system of questions reproduces the procedure by which a number is 
translated into the binary system. The ten questions are enough because 
every number from 1 to 1000 can be written in binary notation using no 
more than ten places (since 1024 = 210). If the intended number had 
been written in binary notation in the first place, it would have been 
clear how our ten questions were functioning: We were actually asking 
whether each of the digits was a zero or a one.

Let us consider another problem which is closely related to this one.

Problem 2. I have seven tables, each of which contains a chessboard 
of 64 squares (fig. 2).

In each square is written a number from 1 to 127. Choose one of 
these numbers, and tell me in which of the tables (they are numbered 
from 1 to 7) that number is located. I can name the number. How?

Here is the solution to this uncomplicated problem:
Let us write every number from 1 to 127 in binary notation. None of 

these representations has more than seven places, since 127 = (1111111)2- 
We put a number A in the kth table (k = 1, 2 ,. . ., 7) if, in its binary 
representation, the kth place from the right has a 1, and we do not write 
it there if the kth place is occupied by a zero. For example, the number 
57, which is written in binary notation as

0111001 ,

would be contained in the first, fourth, fifth, and sixth tables, the 
number 1 only in the first table, the number 127 in all of the tables, and 
so on. In this way, if we know in which tables a number is contained, we 
know its binary representation. All we need do is translate it into the 
decimal system.
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1 3 5 7 9 11 13 15
17 19 21 23 25 27 29 31
33 35 37 39 41 43 45 47
49 51 53 55 57 59 61 63
65 67 69 71 73 75 77 79
81 83 85 87 89 91 93 95

97 99 101 103 105 107 109 111
113 115 117 119 121 123 125 127

l

4 5 6 7 12 13 14 15

20 21 22 23 28 29 30 31

36 37 38 39 44 45 46 47

52 53 54 55 60 61 62 63

68 69 70 71 72 77 78 79
84 85 86 87 92 93 94 95

100 101 102 103 108 109 110 111

116 117 118 119 124 125 126 127
3

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

80 81 82 83 84 85 86 87

88 89 90 91 92 93 94 95

112 113 114 115 116 117 118 119

120 121 122 123 124 125 126 127

5

2 3 6 7 10 11 14 15
18 19 22 23 26 26 30 31
34 35 38 39 42 43 46 47
50 51 54 55 58 59 62 63
66 67 70 71 74 75 78 79
82 83 86 87 90 91 94 95

98 99 102 103 106 107 110 111
114 115 118 119 122 123 126 127

2

8 9 10 11 12 13 14 15

24 25 26 27 28 29 30 31

40 41 42 43 44 45 46 47

56 57 58 59 60 61 62 63

72 73 74 75 76 77 78 79

88 89 90 91 92 93 94 95

104 105 106 107 108 109 110 111

120 121 122 123 124 125 126 127
4

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

96 97 98 99 100 101 102 103

104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119

120 121 122 123 124 125 126 127

6

64 65 66 67 68 69 70 71

72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87

88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103

104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119

120 121 122 123 124 125 126 127

7

Fig. 2
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The question can be reversed: Choose a number from 1 to 127, and 
1 will tell you in which of the tables in figure 2 it is located and in which 
it is not. To answer the question, all we need do is translate the given 
number into the binary system (with a little practice this is not difficult 
to do in your head) and then simply name those places that are occupied 
by a l.2

The above discussion leaves one unanswered question, however. Why 
are there exactly sixty-four numbers in each table? Let us consider table 
k (k = 1, 2 , . . . ,  7) in which we have written all numbers from 1 through 
127 which have a one in the kih. place from the right. To each of these 
numbers, there corresponds a unique number which is derived from the 
first by substituting 0 for 1 in the kth. place. This second number, of 
course, will not be in table k; yet it will be between 0 and 127 inclusive 
(and will be zero only when the original number has 1 only in the k\h 
place). Furthermore, all the numbers not in table k derived by this 
correspondence will be distinct (as is easy to verify); and each number 
not in table k  can be derived from some number in table k  by the corre
spondence. Thus, if there are n numbers in table k, there must be n — 1 
numbers not in table k  (discounting zero, and allowing only numbers 
from 1 through 127), so that the following deduction holds:

n +  (n -  1) = 127 ;
In -  1 = 127 ;

2n = 128 ; 
n = 64.

Since this is true for all k = 1, 2, . .  ., 7, there must be exactly 64 num
bers in each table.

9. The Game of Nim

A game called “ Nim ” was popular in ancient China. It involves 
three piles of stones; two players alternate in taking stones from the 
piles; in each turn a player can take any nonzero number of stones 
from any pile (but only from one). The winner is the one who takes the 
last stone.

Nowadays, more convenient objects are used in place of stones—for 
example, matches. The problem lies in clarifying the optimal strategy 
for each player.

2. In each of the above-mentioned tables, the numbers are written in order of 
increasing size, making the structure of these tables fairly easy to discover. How
ever, within each of the seven tables, the numbers can be rearranged quite arbi
trarily, hiding the method by which the tables were constructed.
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The binary system is helpful in solving this problem. Suppose that 
there are a, b, and c matches in the three piles. We write the numbers 
a, b, and c in binary notation:

a = am-2m + 1 + ■ ■ ■ + a1-2 + a0 ,
b = bm• 2m + 6m-i • 2m~1 + • • • + • 2 + b0 ,
c = cm-2m + cm_r 2m~1 + • • ■ + Cj-2 + c0 .

If necessary, we put zeros in front of the numbers which have fewer
digits. In this way, each of the digits a0, b0, c0, . . . ,  am, bm, cm can be 
equal to either 0 or 1, with at least one of the digits am, bm, and cm (though 
not necessarily all) different from zero. The player who goes first may 
replace one of the numbers a, b, or c with any smaller number. Suppose 
that he decides to take matches from the first pile, that is, to change the 
number a. This means that some of the digits a0, ax, . . am will be 
changed. Analogously, in taking the matches from the second pile, the 
player would change at least one of the digits b0, . . . ,  bm; and, taking 
matches from the third pile, he would change at least one of the digits

• • • J Cm.
Now consider the sums

om -f bm 4- cm , am_i T bm — i 4- Cm+i > • • •> T bo T Co . (*)

Each of these sums can equal 0, 1, 2, or 3. If at least one of these sums 
is odd (that is, equals 1 or 3), then the player with the first turn is 
assured of victory. In fact, let ak + bk + ck be the first (counting from 
the left) of the sums in (*) which are odd. Then at least one of the three 
numbers ak, bk, and ck is equal to 1. Assume, without loss of generality, 
that ak = 1. Then the first player can take from the first pile any 
number of matches such that the coefficients am, . . . , a k+1 do not 
change, ak is equal to 0, and every one of the coefficients ak_1, .. 
a0 can take whatever value (0 or 1) the player desires. Thus, the 
player can take a number of matches from the first pile such that all the 
sums

ak- \  +  bk- 1 + Cfc-i, . . ., + b0 +  c0

become even.
In other words, the first player can arrange it so that after his turn 

all the sums in (*) have become even. The second player, in making his 
move, cannot help but change the evenness of at least one of the sums, 
since he must change at least one digit in some number, but in only one
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number. This means that after his turn we again have the situation in 
which at least one of the sums in (*) is odd. The first player, in his next 
move, can again even out all the sums. And so, after every turn of the 
first player, all the sums in (*) are even, and after every turn of the second 
player, at least one of these sums is odd. Since the total number of 
matches decreases after every turn, we eventually reach the situation 
where all the sums in (*) are zero—there are no matches left. Since all 
sums are even when and only when the first player has just taken his 
turn, the first player must have taken the turn that reduced all the sums 
to zero, and so he must have taken the last match; he has won.

For example, suppose that initially a = 7, b = 6, and c = 2. We 
would then write

a =  ( i n ) 2 ; 
b = (110)2 ; 
c =  (010)2 .

The sums of interest would be

rz2 T + c2 = l T l + 0  = 2,  
al + b1 + c 1 = \ + \ + l =  3, 
aQ + bo + co = l + 0  + 0 =  l .

The “ first” odd sum is a± +  bx +  c1 = 3. The first player may then 
decide to draw from the first pile. In doing so, he should change a1 from 
1 to 0. But he must also arrange for a0 + b0 +  c0 to be even, so he must 
also change a0 from 1 to 0. The result is the subtraction of (011)2 = 3 
stones from the first pile, leaving

a = 4 = (100)2 ; 
b = 6 = (110)2 ; 
c = 2 = (010)2 .

The sums

a2 + ^2 +  C2 ~  2 ,
+  b  ̂ + c1 = 2 , 

ao +  + co ~  0

are then all even.
The second player may decide to draw three stones from the first pile
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(it doesn’t matter what he decides; if the first player knows the optimal 
strategy, he has no chance). This would leave

a = 1 = (001)2 ; 
b = 6 = (110)2 ; 
c = 2 = (010)2 ,

and

a2 + b2 + c2 — I , 
a1 + h i +  Ci =  2 , 

+ b0 + c0 = 1 .

The first player must then decide to draw from pile two, in order to 
change b2 from 1 to 0 (the only way to even out a2 + b2 + c2 without 
adding stones). In doing so, he must change b0 from 0 to 1, while 
leaving b1 fixed. In other words, he must change b from (110)2 = 6 to 
(011)2 = 3 by drawing 3 stones. This leaves

a = ]  = (01)2 ; 
b = 3 = (11)2 ; 
c = 2 =  (10)2 .

Suppose the second player decides to simplify the game by removing the 
stone from the first pile (again, it doesn’t matter what he decides). This 
leaves (omitting the first pile)

b = 3 = (11)2 ; 
c = 2 = (10)2 ,

and

bi +  Cj = 2 ,
b0 +  c0 =  1 .

The first player then removes one stone from the second pile, so that

b = c = 2 = (10)2 ;
b1 + cj = 2 ; 
b0 + c0 = 0 .

At this point, the second player will not remove one of the piles, for
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that would mean instant defeat. Instead, he draws one stone, say from 
the last pile, leaving

b = 2 = (10)2 ; 
c = l =  (01)2 ;
bi + G =  1 ; 
bQ + cQ = 1 .

The first player must change both the first and second places in one of 
the numbers; this can be accomplished only by changing b from 
(10)2 = 2 to (01)2 = 1. Then

b = c = 1 ,

and the second player must remove one of the stones, after which the 
first player removes the other and wins.

If all the sums in (*) are initially even, the first player’s first turn 
makes at least one of the sums odd, allowing the second player to win 
by using the above strategy.

Thus, if the optimal strategy is known to both players, the numbers a, 
b, and c completely determine the result.

Of course, three numbers that would give the second player victory 
rarely occur, and so in the long run the first player will do far better 
than the second. For example, there are eight ways to divide ten matches 
(a + b + c = 10) into three piles. Seven of these arrangements determine 
victory for the first player, while only one favors the second.

At least one important question is raised, however. Could more 
“ optimal” strategies be devised, using number systems to bases other 
than 2? For example, could the ternary system be used so that the first 
player’s object would be to make the sums of corresponding digits all 
divisible by 3 ? The answer is no since, when a base p number system is 
used, the “ optimal” strategy breaks down as soon as the combined 
total of the number of matches in the three piles becomes less than p. 
In this situation, it is impossible for the first player to arrange for the 
sum of the digits in the units’ place to be divisible by p (unless two piles 
have been exhausted). If, in addition, not all of the binary sums of interest 
were even, the second player could apply the binary strategy to win. 
Such a situation could occur if the first player, using the ternary 
strategy, left exactly one match in each pile after his turn. The remaining 
turns of both players would then be determined, and the second player 
would draw the last match.
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In this way, the ease of translating binary numbers into a system of 
electrical impulses leads to a useful application of the binary system in 
telegraphy.4

11. The Binary System—A Guardian of Secrets

Telegraph and radio-telegraph provide for fast transfer of in
formation. However, telegraph messages are easily intercepted, and 
sometimes, especially in military matters, information must be made 
accessible only to the intended recipient of the message. Therefore, we 
must resort to coding methods.

We have all, at some time, used codes and conducted “ secret corre
spondences.” The simplest type of code is constructed by representing 
each letter of the alphabet by some symbol: another letter, a number, 
a convenient mark, and so on. Such codes are often important in 
detective and mystery stories; for example, Conan Doyle’s “ The 
Adventure of the Dancing Men” and Jules Verne’s Journey to the 
Center o f the Earth. Such codes are easily broken.

Any language, including Russian or English, has a definite structure: 
Some letters and letter combinations occur often, some less often, and 
others (for example, a w following a q in English) not at all. This 
structure is independent of the choice of alphabetic symbols, and so it 
remains after coding, allowing us to discover the coding system and the 
actual message. Even coding systems far more complex than those of 
this type yield their secrets to an experienced decoder.

It becomes necessary, then, to devise a code which cannot be deci
phered by such simple means. One such code is based on the binary 
number system and on a variation of the system of letter representation 
we discussed in the last section.

Using the telegraph code, we can represent any message by a definite 
sequence of five-digit combinations of zeros and ones. Suppose we set 
up in advance some absolutely arbitrary sequence of such five-digit 
binary numbers. Such a sequence, intended for coding a text, is called a 
scale. We make two copies of the scale, writing it as a combination of 
holes in a special paper tape (fig. 3), in which every row across on the 
tape contains some live-digit combination, a punched hole representing 
a one, and the absence of a hole representing a zero.

4. In addition to the coding system we have constructed, there is a widely 
accepted coding system called the Morse code, which also relies on representations 
of letters using combinations of two symbols—in this case, dots and dashes. We 
shall not discuss the details of the Morse code system here.
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Fig. 3

We keep one copy of the scale and send the other to the person with 
whom we have a telegraphic connection. We now combine our message 
with the “ arbitrarily” prepared scale in the following way: We “ com
bine” the first five-digit number (the first letter) of the message with the 
first number of the scale, the second number of the message with the 
second number of the scale, and so on, “ adding” in columns under the 
rules

0 0 0  = 0 , 1 © 0  = 0 + 1  = 1 , 1 © 1 = 0 ;

that is, without carrying the sum of two units into the next place. The 
operation 0 is called “ addition modulo 2” ; clearly, such a method of 
combining two binary numbers yields a 0 digit in each place in which 
the corresponding digits of the two numbers are equal and a 1 in each 
place in which they are not. The result of such a combination of the text 
and the arbitrary scale can then be transferred as a sequence of electrical 
signals to our addressee. To restore the original message he need only 
add the same scale to the text in the manner described above.

The whole process can be described as follows:

1. text 0 scale = coded text;
2. coded text 0 scale = text 0 scale © scale = text.

It is not hard to see that for the purpose of sending a single message, 
this code is no better than the letter representation code of the last sec
tion; the scale serves only to permute the numbers which are assigned 
to our twenty-seven symbols. But when this code is used to send many 
different messages (using many different scales), the would-be decoder 
is faced with the task of breaking a new code with each message, even 
though no added hardship is imposed on those who know the code and 
its scaling principle. The code is far from “ perfect,” however, since an 
adversary with unlimited resources, even if he never discovered the 
scaling principle, could, in theory, break each new code in the same way 
as the letter representation code can be broken.
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This entire process can easily be made automatic with the attachment 
of an apparatus that would perform the operation of combining message 
and scale to the transmitter, along with a similar apparatus to the re
ceiver. The telegraph operators serving the line need not even know 
such mechanisms are present.

Of course, the binary system is especially convenient here because 
each number, when “ added” to itself, yields a “ sum” of zero, making 
the coding and decoding operations identical.

12. A Few Words about Computers

We have been speaking of the use of the binary system in a compara
tively old province of technology, telegraphy (the first telegraphic 
apparatuses based on transmission of electrical signals via conductors 
appeared in the 1830s). We shall now consider one of the newest 
applications of the binary system—computers. But first we must discuss, 
although in very general terms, just what an electronic computer is.

The history of the development of computer technology is very 
lengthy and at the same time very short. The first devices designed to 
simplify the work of computation appeared long ago. For example, 
ordinary calculators were used for accounting purposes over four 
thousand years ago. Still, genuine “ machine mathematics” arose no 
more than twenty-five years ago, when the first high-speed computers 
based on modern electronic technology (radio tubes and later tran
sistors) appeared. In the short time the technology of computers 
achieved striking success. Modern computers work at speeds up to 
millions of operations per second; in other words, they perform in one 
second as many operations as an experienced human armed with a 
desk calculator can perform in several months. These machines have 
allowed us to solve problems which are so complex that solutions by 
hand would have been out of the question. For example, a modern 
computer is capable of solving a system of several hundred simultaneous 
linear equations with the same number of unknowns. A human 
“ computer” armed with a pencil, paper, and desk calculator could 
not cope with such a problem in a lifetime.

When computers are mentioned in popular literature, we find ex
pressions such as “ the machine that solves complex equations,” “ the 
machine that plays chess,” or “ the machine that translates from one 
language to another.” This can give the false impression that each such 
function—solving equations, playing chess, translating, and the like— 
is done by a specific machine built only for that purpose. However, all 
these problems and more—both mathematical (solving equations,
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constructing tables of logarithms, and so forth) and nonmathematical 
(translating a text or playing chess)—can be solved by one machine, the 
so-called universal computing machine. Strictly speaking, every such 
machine can perform only a very limited number of elementary opera
tions: adding and multiplying numbers and storing the results in the 
machine’s “ memory,” comparing numbers, choosing the largest or the 
smallest of two or more numbers, and the like. However, the solutions 
of the most diverse and complicated problems can be reduced to 
sequences (possibly very long) of such elementary operations. Such a 
sequence of operations is defined by a “ program.” Thus, variety in the 
problems which can be solved by a universal computing machine leads 
to variety in the programs fed into this machine.

In doing computations by hand or by computer, we must agree on 
some number system. When working with pencil and paper, we, of 
course, use the decimal system to which we are accustomed. However, 
the decimal system is hardly suitable for electronic computers. Such 
machines have a decided preference for the binary system. We shall now 
attempt to find the reasons for this.

13. Why Electronic Machines “ Prefer”  the Binary System

When we perform a computation by hand, we write the numbers on 
paper in pencil or pen. For a machine, however, some other method of 
storing the numbers with which it is operating is needed.

To clarify this problem, consider, for the moment, not a computing 
machine, but a far simpler apparatus—an ordinary counting device 
(electric meter, gas meter, taxi meter, and so on). Every such counter is 
composed of several discs, each of which can be situated in one of ten 
positions, corresponding to the digits from 0 to 9. It is clear, then, that 
an apparatus consisting of k  such discs can serve to store one of 10fc 
different numbers, from 0 to 10fc — 1. Such a counter could very well be 
used for computation; that is, it could be used not only to store numbers 
but also to perform arithmetical operations.

In general, a counter suited to a number system with basep is a system 
of discs, each of which has p different positions. In particular, the 
apparatus with which binary numbers could be stored should contain a 
number of objects, each of which would have two possible positions. 
It is clear that we need not use discs as the counting apparatus. In 
principle, a counter can consist of any collection of convenient elements, 
the only requirement being that each of the elements be able to take on 
as many stable conditions as there are units in the base of the number 
system being used.
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A counter employing a system of wheels or any other mechanical 
apparatus changes its state relatively slowly. The speed with which 
modern computers work—millions of operations per second—is 
possible only because these machines work electronically rather than 
mechanically. Such machines are practically devoid of inertia and, 
therefore, can change their state within a time interval of a millionth 
of a second.

Electronic elements (vacuum tubes, transistors) typically have two 
stable conditions. For example, an electric bulb can be “ on” (when 
current is passing through it) or “ off” (when current is not passing 
through it). Semiconductors, now widely used in computer technology, 
operate by the same principle. This property of electronic elements is 
the basic reason why the binary system has proved to be the most 
convenient one for computers.

The input data for solving a problem is usually given in the conven
tional decimal system. Therefore, so that a machine based on the binary 
system can use the data, we must translate it into binary representation, 
a language that the machine’s arithmetical apparatus can “ under
stand.” Such a translation is simple to accomplish automatically, of 
course. We also want the results of the computer’s computations to be 
written in the decimal notation. Therefore, the computer generally 
must translate the result from the binary system into the decimal system.

Computers sometimes use a combined binary-decimal system. In this 
system, a number is first written in the ordinary decimal system, and 
then each of its digits is represented, using zeros and ones, in the binary 
system. In this manner, the binary-decimal system represents every 
number as several groups of zeros and ones. For example, the number

2593

is written in the binary-decimal system as

0010 0101 1001 0011 .

In comparison, the binary representation of the same number is

101000100001 .

Let us see how a computer based on the binary number system per
forms arithmetic operations. The basic operation which we should 
consider is addition, since multiplication reduces to iterated addition, 
subtraction reduces to addition of negative numbers, and, finally,
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system. Economy is measured by the quantity of numbers that can be 
expressed in the number system with some arbitrary number of symbols.

Let us clarify this with an example. In order to write 1,000 numbers 
(from 0 to 999) in the decimal system, we need 30 “ symbols” (10 digits 
for each place). In the binary system, we can write 215 different numbers 
using 30 “ symbols” (since, for every binary place, we need only 2 digits, 
0 and 1, and so, with 30 symbols, we can write numbers containing up to 
15 binary places). But

215 > 1000 ;

therefore, using 15 binary places, we can write more different numbers 
than we can with three decimal places. In this sense, the binary system 
is more economical than the decimal system.

But which of all the number systems is the most economical? Let us 
consider the following concrete problem. Suppose we have at our dispo
sal 60 symbols. We can separate them into 30 groups of 2 elements each, 
writing any number in the binary system using no more than 30 binary 
places, that is, 230 numbers. We can also divide these 60 symbols into 
20 groups of 3 elements each and, using the ternary system, write 320 
different numbers. Furthermore, by separating the 60 symbols into 15 
groups of 4 elements each, we can apply the base 4 system and write 415 
numbers, and so forth. In particular, if we used the decimal system 
(that is, separating all the symbols into 6 groups of 10 elements each), 
we could write 106 numbers, but if we used the sexagesimal (base sixty) 
system, 60 symbols would allow us to write only 60 numbers. Let us 
find out which of the possible systems is the most economical; that is, 
which one allows us to write the greatest quantity of numbers using only 
60 symbols. In other words, we are asking which of the numbers

230, 320, 415, 512, 610, 106, 125, 154, 203, 302, 60

is the largest. It can be verified by calculation that the largest number is 
320. We first show that

Since 230 = (23)10 = 810 and 320 = (32)10 = 910, we can write our 
inequality in the form

810 < 910 . 

In this form, our result is obvious.



One Remarkable Property of the Ternary System 33

Furthermore,

415 = (22)15 = 230 .

Thus, by what we have just shown,

32° > 415 _

It is easy to verify that the following chain of inequalities is valid:

415 > 512 > 610 > 106 > 125 > 154 > 203 > 302 > 60 .

Thus, the ternary system has turned out to be most economical, with 
the binary and base four systems next best.

This result is in no way dependent on the fact that we were considering 
60 symbols. We chose this example only because a group of 60 symbols 
is easily divided into groups of 2, 3, 4, and so forth.

In the general case, if we employ n symbols and use some number x 
for the base of the number system, then we can use n/x places, and the 
quantity of numbers that we can write will be equal to

X nlx

Consider this expression as a function of the variable x, taking not only 
integral but any (fractional, irrational) positive values. It is possible to 
find the value of x  at which the function achieves its maximum. The 
function has a maximum at e, an irrational number which is the base of 
the so-called system of natural logarithms and which plays an important 
role in the most diverse questions of higher mathematics.6 The number 
e is approximately equal to

2.718281828459045 ___

6. For the reader familiar with the elements of differential calculus, we give the 
corresponding calculation. A necessary condition for a function y ( x )  to achieve 
its maximum at a point x 0 is that the derivative of the function be zero at that 
point. In the given case,

y ( x )  =  x nlx .

_ — lY*')"'*! = — (en 1° 
d x  lW  J d x K

=. (5.1 -  a , - " -
\ X  X  X z J

=  ^ 2  (1 — In x ) e n ln xlx

xlxy

=  - ^ 2  (1 -  In x ) x nlx .

The derivative is equal to

dy
dx
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The closest integer to e is 3, which serves as the base for the most 
economical number system.

The graph of the function y = (x)nlx is given in figure 4. (Note, 
however, that the x- and j-axes have different scales.)

Fig. 4

The economy of a number system is a significant property from the 
standpoint of its use in computer technology. For this reason, although 
the use of the ternary system in place of the binary system in computers 
involves some difficulties in construction (one must use elements that 
can exist in three rather than in two stable conditions), the ternary 
system has already been tried in several existing computers.

15. On Infinite Number Representations

Up to this point, we have considered number system representations 
only of the integers. It is natural, however, to pass from the decimal 
notation of whole numbers to decimal representation of fractions. To 
do so, we must consider not only the nonnegative powers of 10 (1, 10, 
100, and so on), but negative powers (10" *, 10“2, and so on), and 
compose combinations in which we use these negative powers as well as 
the others. For example, the expression 23.581 stands for

2-101 + 3-10° + 5-10-1 + 8-10"2 + M 0 - 3 .

Fractions are conveniently represented as points on a line. We take a

Setting the derivative equal to zero, we obtain

In x  =  1, that is, x  =  e  .

Since the derivative d y j d x  is positive to the left of x  =  e and negative to the right, 
we can use a well-known theorem of differential calculus to show that our function 
has a maximum at that point.
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line and choose a fixed point O (the origin of the line), a positive direc
tion (to the right), and a unit of measure, the line segment OA (fig. 5). 
We take the point O to stand for the number zero, and the point A to 
stand for the number 1. Having laid the segment OA to the right of the 
point O two, three, etc. times, we obtain points which represent the 
numbers 2, 3, and so on. In this way we can represent all the integers 
on a line. To represent fractions containing tenths, hundredths, and so 
on, we need only divide the segment OA into ten, one hundred, and so 
forth, equal parts and use these smaller units of length. We can thus 
measure off points on the line corresponding to all possible numbers of 
the form

akak - 1 '  '  ‘a\O0.b1b2- ‘ ‘bn >

that is, all possible finite decimal representations. In doing so, of course, 
we do not obtain all the points of the line. For example, the endpoint of 
a segment of the same length as a diagonal of the unit square (the square 
with side 1) does not correspond to any finite decimal representation, 
since the ratio of the length of a square’s diagonal to the length of its 
side is irrational.

If we want each point of the line to correspond to some number, we 
shall have to use not only finite, but infinite decimal representations. 
Let us clarify the meaning of this last statement.

In order to make every point of the line correspond to some (infinite) 
decimal representation, we proceed in the following manner. For con
venience, we shall speak only about a part of the whole line, the line 
segment OA—our unit interval. Let x  be some point on this line seg
ment. We divide OA into 10 equal parts and number the parts using the 
digits from 0 to 9. We denote the number of the section in which x 
lies by We now divide this smaller segment into 10 parts, numbering 
these parts in the same way, and denoting the number (0 to 9) of the 
smaller section by b2. We subdivide further in the same way, continuing 
the process indefinitely. As a result, we obtain a sequence of digits 
bu b2, . . . ,  bn, . . . ,  which we write in the form

■ b\b2 - ••£>„••• ,

and which we call the infinite decimal representation (or infinite decimal 
expansion) corresponding to the point x. If we break off this expansion
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at some point, we get an ordinary (finite) decimal representation 
■bib2 - ■ ■bn, which defines the position of the point x only approxi
mately (with an accuracy of a (10n)th part of the unit interval).

In this way, we have assigned to each number x between 0 and 1 an 
infinite decimal expansion. The correspondence can be extended to the 
entire line, for if the number y lies between the integers n and n + 1, 
the number x = y — n lies between 0 and 1 and thus has some decimal 
representation

x = .b j)2- - -K-  ■ • . 

If the integer n has the decimal representation

akak-  1 '  '  ' a la0 >

then y  can be written

y = n + x = akak_1- ■ ■ -bn- ■ ■ .

It is not hard to see that some uncertainty inevitably arises from this. 
In particular, having divided the segment OA into 10 parts, we must 
consider, for example, the point on the boundary between the first and 
the second parts. We can consider it to be both in the first section 
(having number 0) and in the second (having number 1). In the first 
case, continuing the process of successive divisions, we will discover that 
the chosen point is in the rightmost (having number 9) of all the parts 
into which we divide the segment at each step, that is, we obtain the 
infinite fraction

0.0999

while in the second case the point will be in each of the sections which 
have number 0, that is, yielding the fraction

0.1000....

Here we have obtained two infinite representations corresponding 
to one and the same point. The same thing will occur at any other 
boundary point (between two segments) in any of the successive 
divisions. For example, the fractions

0.125000... and 0.124999...

represent one and the same point.
We can avoid this ambiguity by agreeing to think consistently of 

every boundary point as belonging either to the rightmost or the leftmost
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of the partial segments which it bounds. In other words, we can elimi
nate either all fractions consisting of “ infinitely repeating” zeros, or all 
fractions consisting of “ infinitely repeating” nines.

If we introduce such a restriction, we can represent each point of the 
line by a unique infinite decimal expansion.

That we have successively divided the partial segments into 10 parts 
is, of course, immaterial. Instead of 10, we could have used some other 
number, say 2, dividing each partial segment in half. In this way we can 
represent each point of the line by an infinite sequence bl} b2, .. ., bn, .. . 
of zeros and ones, which we write in the form

(0.bib2■ • 'bn- ■ ■)2

and call an infinite binary representation (or expansion). If we cut off 
this sequence at some place, we get the finite binary representation

(0 A 6 2• • A ) 2 ;

that is, the number

b1- 1/2 + b2•1/22 + • ■ • + bn•1/2n ,

approximating the point under consideration to within a (2n)th part of 
the unit interval.

Infinite decimal expansions, with which we can represent all the 
points of the line, are a convenient tool in the construction of the theory 
of real numbers, which is fundamental in many aspects of higher 
mathematics. However, any other type of infinite expansions (binary, 
ternary, and so on) can be used with equal success.

Before concluding, let us consider the following instructive problem. 
We take a line segment OA, divide it into three equal parts, and reject 
its middle part (we consider the points of division themselves to be 
members of the middle part—that is, they are also rejected; fig. 6). We

o) °-------------------------------------------------------------  h

(2)i---------wmm-----------------------------------------------mam---------1

(3>h % i- m  m mmmmmmm m mmm m\ i

Fig. 6
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further divide each of the two remaining parts into three equal parts and 
reject the center segments. After this there remain four small pieces, 
from each of which we again take the middle third. We continue this 
process indefinitely. How many points of the segment OA will remain 
undeleted ?

At first glance we might say that only the endpoints O and A will 
remain. This conclusion is supported, it would seem, by the following 
reasoning. We compute the sum of the lengths of all the segments 
deleted by the above process. (We recall that we took the length of the 
entire segment OA to be equal to 1.) At the first step we rejected a 
segment of length 1/3, at the second step two segments of length 1/9, 
at the third four segments of length 1/27, and so on. The sum of the 
lengths of all the deleted segments is equal to

1/3 + 2/9 + 4/27 + . . . .

This is an infinite geometric progression with first term 1/3 and ratio 2/3. 
By the well-known formula, its sum is equal to

1/3
1 -  2/3 = 1 .

Thus, the sum of the lengths of the deleted segments is exactly equal 
to the length of the original segment OA!

And yet the above process leaves—besides O and A—an infinite 
number of undeleted points. To see this, we represent each point of the 
unit segment OA by an infinite ternary expansion. Each such representa
tion consists of zeros, ones, and twos. We claim that the process of 
deleting the “ middle third” leaves behind exactly those points which 
correspond to ternary expansions containing no ones (composed 
entirely of zeros and twos). In the first step we deleted the middle third 
of the unit interval, that is, those points which correspond to ternary 
expansions having a one in the first place. In the second step we deleted 
the middle third again, removing the expansions which have a one in the 
second place, and so forth. (Here we delete those points that can be 
represented by two ternary expansions if one of these expansions con
tains a one. For example, the endpoint of the first third of the line 
segment OA, the number 1/3, can be represented by the ternary expan
sions

0.1000...
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and

0.0222.. . ;

this point we delete.) And so, the process leaves exactly those points 
which correspond to ternary expansions consisting only of zeros and 
twos. But there are infinitely many such numbers! Consequently, 
besides the endpoints, there will still remain infinitely many undeleted 
points. For example, the point that corresponds to the representation

0 . 020202 . . .

(the ternary expansion of the number 1/4) will remain. The infinite 
ternary representation 0.020202. . . actually signifies the sum of the 
geometric progression

2-3“2 + 2-3“4 + 2-3-6 + . . . ,

which, by the formula, is equal to

2/9
1 - 1 / 9

By using the following geometric argument, we can persuade our
selves that the point 1/4 will not be deleted. The point 1/4 divides the 
whole interval [0, 1] in a ratio of 1:3. After the removal of the segment 
[1/3, 2/3], the point 1/4 remains in the half-open interval [0, 1/3), which 
it divides in a ratio of 3:1. After the second deletion it remains in the 
open interval (2/9, 1/3), which it divides in a ratio of 3:1, and so on. 
At no step will the point 1/4 be removed.

Thus, it turns out that the process of deleting the “ middle third” 
leads to a set of points which, although it “ takes up no space at all” on 
the line segment (since the sum of the lengths of the deleted segments is 
equal, as we have made clear, to one), contains infinitely many points.

This set of points possesses other interesting properties; however, 
to study them would require an exposition of concepts beyond the 
scope of our little book. Thus, we end here.
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